DOE/NETL Mercury Control Technology Development Program

IEACCS
Biomass Co-Firing and Coal
Fired Power Generation

Pisa, Italy
October 25, 2002

Robert Romanosky, Ph.D., Advanced Research Product Manager National Energy Technology Laboratory

Potential Mercury Regulations

MACT Standards

- Likely ≤ 90% Hg reduction
- Compliance: 2007

Clean Power Act of 2001

- 4-contaminant control
- 90% Hg reduction by 2007

President Bush Announcing Clear Skies Initiative February 14, 2002

Clear Skies Act of 2002

- 3-contaminant control
- 46 % Hg reduction by 2010
- 70% Hg reduction by 2018
- Hg emission trading

Why Have Power Plants Been Targeted for Hg Emissions Control?

- Mercury (Hg) is the hazardous air pollutant of greatest concern:
 - Hg is a neurotoxin
 - bioaccumulates in food chain
 - humans exposed to methylmercury through fish consumption
- Other industrial sources regulated:
 - municipal waste combustors
 - medical waste incinerators
- Based on 1999 ICR data, coal-fired power plants contribute about one-third of annual U.S. anthropogenic Hg emissions (about 49 tons/year)

Coal-Fired Utility Plants Boiler and APCD Information

Types of Boilers (1140 units)

- Pulverized coal-fired: 979 units
- Cyclone-fired: 87 units
- Fluidized-bed combustors: 42 units
- Stoker-fired: 32
- Flue gas cleaning methods*
 - ESPs only: 787 units
 - FFs only: 79 units
 - Dry scrubbers: 43
 - Wet FGD scrubbers: 143
 - Other: 88 units

^{*38} units with SNCR and 6 units with SCR

Coal Use and Mercury Emissions

Coal type	Dry tons burned, 1999		Total mercury emitted, tons	
Bituminous	427,572,000	56	25	52
Subbituminous	279,227,000	36	17	36
Lignite	50,932,000	7	4	9

^{*} For wet tons (as received), total is 928,398,000 tons (vs. 768,487,000 dry tons) Percentage for wet tons is 50% bituminous, 41% subbituminous, 8% lignite

What Is NETL's External Program?

- In response to the 12/14/00 EPA regulatory determination regarding control of Hg and related HAPs from utility boilers, DOE/NETL is:
 - Conducting field-scale testing of Hg control technology to develop cost and performance data
 - Initiating pilot-scale testing of advanced
 Hg (multi-pollutant) control concepts
 - –Mercury Cost and Performance Modeling

R&D Goals DOE Mercury Control Program

Have technologies ready for commercial demonstration:

- By 2005, reduce emissions 50-70%
- By 2010, reduce emissions by 90%
- Cost 25-50% less than current estimates

2000

Year ----

Baseline Costs: \$30,000 - \$70,000 / Ib Hg Removed

Cost

Technology Approach

- Augment existing control technologies
 - Add sorbent upstream from baghouse or electrostatic precipitator
 - Spray-Cooling
- Oxidize elemental mercury and capture in a flue gas desulfurization unit

SCR + FGD Not Necessarily the Solution

Plant 1 – Bituminous coal

- 25% Hg oxidation across SCR
- 98% total oxidized Hg

Plant 2 – Bituminous coal

- -31% Hg oxidation across SCR
- -88% total oxidized Hg

Plant 3 – Subbituminous coal

- -5% Hg oxidation across SCR
- 10% total oxidized Hg

ICR Data Uncertainty Confidence of Performance for Mercury Control

Confidence Level of Mercury Capture (%)
Information Collection Request Data

NETL Analysis of Uncertainty for Control of Mercury in Coal Plants, D. Smith et al; U.S. EPA ICR Data, Speciated Mercury Testing

Uncertainties *Mercury Control Technologies*

- Balance-of-plant impacts
- By-product use and disposal
- Capture effectiveness with low-rank coals
- Confidence of performance

Capturing Mercury Is Difficult!

Houston Astrodome

A Hypothetical Example

- Dome filled with 30 billion ping pong balls
- 30 mercury balls
- Remove 27 balls for 90% Hg capture

Six Mercury Control Field Tests

Technology / Utility Plant	Start Date
ADA-ES – Sorbent Injection Alabama Power – Gaston We Energies – Pleasant Prairie PG&E – Brayton Point PG&E – Salem Harbor	March 2001 September 2001 June 2002 September 2002
McDermott-B&W – Enhanced Scrubbing Michigan South Central Power – Endicott Cinergy – Zimmer	May 2001 October 2001

Current Mercury Control Focus

Operating plant tests

-ADA Environmental Solutions, LLC

 ADA-ES has completed three of four planned field tests of sorbent injection technology at power plants that have either electrostatic precipitators (ESP) or fabric filters

-B&W/McDermottTechnology, Inc.

 B&W/MTI finished testing of proprietary liquid reagent in two different sizes/types of wet FGD downstream of an ESP

ADA-ES Field Test Sites

Alabama Power – Gaston

- 135 MW
- Low-sulfur bituminous coal
- ESP
- COHPAC fabric filter

We Energies – Pleasant Prairie

- 150 MW
- Subbituminous coal
- ESP

PG&E – Brayton Point

- 122 MW
- Low-sulfur bituminous coal
- Low-NO_x burners
- Two ESPs in series

Mercury Removal Trends

Activated Carbon Injection

Gaston: Bit., ESP

Brayton Point: Bit., ESP

Pleasant Prairie: SubB., ESP

Michael D. Durham, ADA Environmental Solutions, Presentation, 0808/02, Clean Air Act Advisory Committee, Permits/New Source Review/Air Toxics Subcommittee Utility MACT Working Group

Observations From Field Tests

Activated carbon removes Hg

 Range of effectiveness depends on coal type and plant configuration

Many uncertainties remain

- -Low-rank coals
- Sorbent costs
- Units equipped with ESPs
- Downtime for startup
- By-product use and disposal

Mercury Control Technology Field Testing B&W/MTI Enhanced Scrubbing

Host Sites:

- Michigan South Central Power
 - Endicott 55 MW, limestone forced oxidation
 - High-S bituminous coal

Cinergy

- Zimmer 1300 MW, thiosorbic lime
- High-S, bituminous coal

B&W Field-Test Summary

FGD System Gas Phase Hg Removal, %		Endicott	Zimmer
rig Kemovai	Average	79	51
	Range	67 to 84	38 to 69
Average Coal Mercury, lb/10 ¹² Btu		14	12
Stack Hg Emissions, lb/10 ¹² Btu		1.1 to 5.3	3.6 to 8.4

General Assessment of Wet FGD Mercury Control Potential

FGD mercury control variation reflects:

- Coal / mercury speciation differences
- System design differences (tower configuration, SO₂ removal, L/G)
- System chemistry (forced oxidation / natural / inhibited)

Enhanced FGD is cost effective approach for co-control

- Limited additional hardware
- Low reagent use rate

Mercury control efficiency

- 90% possible for bituminous coal but it's a stretch currently
- 50 to 70% readily achievable for bituminous coal sites
- Integrated Hg⁰ oxidation catalytic or chemical?
- Must control re-emission of Hg⁰

Impact on By-Products Could Be Significant

Fly Ash

- 63M tons / yr generated
- 32% used
- Utilization loss for concrete < \$390M impact

FGD By-Product

- 25M tons / yr generated
- 19% used
- Utilization loss for wallboard ≤ \$135M impact

Hazardous Designation of All By-Products
Would Cost \$11 Billion / Year

Long-Term Field Testing Key Research Need

- Competitive solicitation in FY 03
- Seeking stakeholder input:
 - Coal types
 - Plant size and configuration
 - Testing duration
 - Application of CEMs

Other Research Needs

- Implications of global Hg emissions on U.S.
- Improvements in CEMs
- Investigation of Hg impacts on coal by-product use and disposal
- Continued development of advanced Hg control concepts

Advanced Mercury Control Concepts

- Apogee Scientific
 - -Advanced Hg sorbents
- CONSOL
 - -Multi-pollutant control for Hg, SO₂, and acid gases
- EERC
 - Hybrid particulate control system

- Powerspan
 - Multi-pollutant control for Hg,
 SO₂, NO_x, particulates, acid gases
- Southern Research Institute
 - -Calcium-based additives to control Hg
- URS Group
 - -Catalyst to convert elemental to oxidized Hg

Designed to Achieve 3 90% Hg Removal

We Live in One World

